Ubuntu 22.04+8*A800 Ollama 运行deepseek-r1

发现 deepseek-r1 的 617B 我的机器刚好满足条件,本着闲着也是闲着,测试一下。

系统硬件介绍

  • Processor : 2*Intel(R) Xeon(R) Platinum 8362 CPU @ 2.80GHz
  • Num of Core : 128 Core
  • Memory : 1024 GB
  • Storage : 1.5T NVMe
  • GPU : 8*A800
  • NVIDIA-SMI 550.127.05
  • Driver Version: 550.127.05
  • CUDA Version: 12.4

下载 Ollama

访问下载: https://ollama.com/

安装Ollama

直接借用官方脚本

curl -fsSL https://ollama.com/install.sh | sh

配置模型下载路径

mkdir -p /root/ollama/ollama_models

并且添加到 ollama 中

如果开始没配置OLLAMA_MODELS ,默认路径是/usr/share/ollama/.ollama/models

vim .bashrc
export OLLAMA_MODELS=/root/ollama/ollama_models

启动ollama服务

运行 Ollama

ollama server

修改ollama 配置

默认情况下,Ollama只会关注localhost的11434端口,因此只能从localhost访问。

vim /etc/systemd/system/ollama.service
在 [Service] 下添加  Environment="OLLAMA_HOST=0.0.0.0"
​
cat /etc/systemd/system/ollama.service
[Unit]
Description=Ollama Service
After=network-online.target
​
[Service]
ExecStart=/usr/local/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin"
Environment="OLLAMA_HOST=0.0.0.0"
​
[Install]
WantedBy=default.target

重启 ollama

systemctl daemon-reload
​
systemctl restart ollama
​
关闭服务
systemctl stop ollama
启动服务
systemctl start ollama

运行模型

ollama run deepseek-r1:671b 

配置 Docker + Nvidia-docker2

安装 Docker

export DOWNLOAD_URL="https://mirrors.tuna.tsinghua.edu.cn/docker-ce"
curl -fsSL https://raw.githubusercontent.com/docker/docker-install/master/install.sh | sh

安装 GPU-Docker 组件

 安装 gpu-docekr 
 
apt-get install -y nvidia-docker2
nvidia-ctk runtime configure --runtime=docker
 
这个会修改 daemon.json  文件,增加容器运行时

配置 Docker 参数

root@catcat:~# cat /etc/docker/daemon.json
{
    "data-root": "/root/docker_data",
    "experimental": true,
    "log-driver": "json-file",
    "log-opts": {
        "max-file": "3",
        "max-size": "20m"
    },
    "registry-mirrors": [
        "https://docker.1ms.run"
    ],
    "runtimes": {
        "nvidia": {
            "args": [],
            "path": "nvidia-container-runtime"
        }
    }
}

测试

docker run --rm -it --gpus all ubuntu:22.04 /bin/bash
root@catcat:~# docker run --rm -it --gpus all ubuntu:22.04 /bin/bash
Unable to find image 'ubuntu:22.04' locally
22.04: Pulling from library/ubuntu
6414378b6477: Pull complete 
Digest: sha256:0e5e4a57c2499249aafc3b40fcd541e9a456aab7296681a3994d631587203f97
Status: Downloaded newer image for ubuntu:22.04
root@e36b1bb454b6:/# nvidia-smi
Wed Jan 22 02:03:29 2025       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.127.05             Driver Version: 550.127.05     CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA A800-SXM4-80GB          Off |   00000000:23:00.0 Off |                    0 |
| N/A   29C    P0             56W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA A800-SXM4-80GB          Off |   00000000:24:00.0 Off |                    0 |
| N/A   29C    P0             56W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA A800-SXM4-80GB          Off |   00000000:43:00.0 Off |                    0 |
| N/A   28C    P0             57W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA A800-SXM4-80GB          Off |   00000000:44:00.0 Off |                    0 |
| N/A   28C    P0             58W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA A800-SXM4-80GB          Off |   00000000:83:00.0 Off |                    0 |
| N/A   28C    P0             57W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA A800-SXM4-80GB          Off |   00000000:84:00.0 Off |                    0 |
| N/A   29C    P0             60W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA A800-SXM4-80GB          Off |   00000000:C3:00.0 Off |                    0 |
| N/A   29C    P0             59W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA A800-SXM4-80GB          Off |   00000000:C4:00.0 Off |                    0 |
| N/A   29C    P0             60W /  400W |       4MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

部署 Open WebUI

version: '3.8'

services:
  open-webui:
    image: ghcr.sakiko.de/open-webui/open-webui:main
    container_name: open-webui
    restart: always
    ports:
      - "3000:8080"
    volumes:
      - open-webui:/app/backend/data
    extra_hosts:
      - "host.docker.internal:host-gateway"

volumes:
  open-webui:

评论

  1. YK
    4 月前
    2025-1-21 14:56:23

    请问速度怎么样

    • 博主
      YK
      4 月前
      2025-1-22 10:10:22

      光速推理吧,大多数都是直出了

      • 天之翼
        猫猫博客
        3 月前
        2025-2-17 7:33:05

        这台服务器得多少钱一个月啊。😁

  2. mrnetman
    2 月前
    2025-3-16 16:54:14

    olllama 配置参数应该修改一下的,不然只能跑在一块GPU上

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇